

Outline

- **□** Purpose
- ☐ Assumptions
- ☐ Results
- **□** Conclusions

Purpose

☐ To evaluate the relative advantages of Article 21 and iso-flux pfd templates on orbital spacing.

Assumptions

The earth station is assumed to use a high-gain receiving antenna with $D/\lambda \ge 100$. For off-axis angles between 1 degree and 180 degrees, the gain of the earth station receiving antenna is given in Recommendation ITU-R SA.509 by

$$G(\theta) = 32-25 \log(\theta), dBi$$
 $1^{\circ} \le \theta \le 48^{\circ}$
 $G(\theta) = -10, dBi$ $\theta > 48^{\circ}$

☐ The interference is given by

$$I = \rho A_{iso} G(\theta)$$

$$\theta = \delta_i - \delta_0$$

☐ Interference criterion is -201 dBW/Hz (equivalent to -165 dBW/4 kHz)

Figure 1 – Geometry of the interference scenario.

Results

Figure 2 –Interference received by an earth station from the emissions of an NGSO satellite complying with an Article 21 pfd template or an isoflux pfd template: earth station elevation angle = 5 degrees.

Figure 3 –Interference received by an earth station from the emissions of an NGSO satellite complying with an Article 21 pfd template or an isoflux pfd template: earth station elevation angle = 22 degrees.

Results (cont.)

Figure 4 –Interference received by an earth station from the emissions of an NGSO satellite complying with an Article 21 pfd template or an iso-flux pfd template: earth station elevation angle = 45 degrees.

Table 2 – Off-axis angle to satisfy the interference criterion using the Article 21 pfd template and the iso-flux template.

Elevation angle (degrees)	Off-axis angle Article 21 template (degrees)	Off-axis angle Iso-flux template (degrees)
5	4.0	3.75
22	8.5	3.75
45	9.75	3.75

Conclusions

- ☐ The off-axis angle and severity of an interference event will, for elevation angles greater than 5 degrees, be less when using an iso-flux template than when using a template based on the pfd limits in Article 21 of the Radio Regulations.
- At elevation angles above about 22 degrees, an iso-flux template will result in a 10 dB reduction in the severity of an interference event and a reduction in the off-axis angle from about 8.5 degrees to 3.75 degrees.
- ☐ At an elevation angle of 45 degrees, the off-axis angle is reduced from 9.75 degrees to 3.75 degrees a factor of 2.6.